On the Accuracy of a Numerical Method for Two-dimensional Scalar Conservation Laws Based on Dimensional Splitting and Front Tracking
نویسنده
چکیده
A rigorous proof of an error estimate for a numerical method for two-dimensional scalar conservation laws is presented. The numerical method under consideration is based on the use of dimensional splitting and front tracking to solve the one-dimensional equations. It is shown that the error is bounded by C(((t) 1=2 + ((x) 1=2 +), where x is the space step, t is the time step, is the parameter measuring the polygonal approximation of the ux functions, and C is a nite constant independent of the discretization parameters. Furthermore, we implement the method on a computer to supplement the theoretical results with numerical examples.
منابع مشابه
Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملA Numerical Investigation on the Unstable Flow in a Single Stage of an Axial Compressor
An unsteady two-dimensional finite-volume solver was developed based on Van Leer’s flux splitting algorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws (MUSCL)” limiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the e...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, ac...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roes flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, acc...
متن کاملFront Tracking for Scalar Balance Equations
We propose and prove convergence of a front tracking method for scalar conservation laws with source term. The method is based on writing the single conservation law as a 2 × 2 quasilinear system without a source term, and employ the solution of the Riemann problem for this system in the front tracking procedure. In this way the source term is processed in the Riemann solver, and one avoids usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994